1. Problem 1-1)
In general, this problem requires f(n) = some time period be solved for a value n. This can be done for all cases except n \(\log n \) and n!, which will be evaluated numerically. For example,

\[F(n) = \log n \text{ microsec} = 1 \text{ sec} \Rightarrow 2^{\log n} = 2^{1E6} \Rightarrow n = 2^{1E6} \]

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
<th>1 day</th>
<th>1 month</th>
<th>1 year</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log n)</td>
<td>(2^{1E6})</td>
<td>(2^{6E7})</td>
<td>(2^{1.6E9})</td>
<td>(2^{8.64E10})</td>
<td>(2^{2.59E12})</td>
<td>(2^{3.15E13})</td>
<td>(2^{3.15E15})</td>
</tr>
<tr>
<td>(n^{0.5})</td>
<td>1.00E12</td>
<td>3.60E15</td>
<td>1.30E19</td>
<td>7.46E21</td>
<td>6.72E24</td>
<td>9.95E26</td>
<td>9.95E30</td>
</tr>
<tr>
<td>(n)</td>
<td>1E6</td>
<td>6E7</td>
<td>3.6E9</td>
<td>8.64E10</td>
<td>2.59E12</td>
<td>3.15E13</td>
<td>3.15E15</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>62746</td>
<td>2.8E6</td>
<td>1.33E8</td>
<td>2.75E9</td>
<td>7.18E10</td>
<td>7.97E11</td>
<td>6.86E13</td>
</tr>
<tr>
<td>(n^2)</td>
<td>1.00E03</td>
<td>7.75E03</td>
<td>6.00E04</td>
<td>2.94E05</td>
<td>1.61E06</td>
<td>5.62E06</td>
<td>5.62E07</td>
</tr>
<tr>
<td>(n^3)</td>
<td>100</td>
<td>391</td>
<td>1532</td>
<td>4420</td>
<td>13736</td>
<td>31593</td>
<td>146645</td>
</tr>
<tr>
<td>(2^n)</td>
<td>19</td>
<td>25</td>
<td>31</td>
<td>36</td>
<td>41</td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td>(n!)</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

In solving for problems like n! and n \(\log n \), numerically solving in Excel is an acceptable approach. For example, let cell A1 equal n and cell A2 equal “=FACT(A1)” Next, we recognize 1 second equals \(1 \times 10^6 \) microseconds. So, increase cell A1 until cell A2 equals \(1 \times 10^6 \). Rather than manually changing cell A1, you could use Excel’s Goal Seek function.

2. Exercise 2.2-2)

\[
\begin{align*}
\text{n} &\leftarrow \text{length}[A] \\
\text{for} \ i &\leftarrow 1 \text{ to } n-1 \\
\text{do} & \quad \text{smallest} \leftarrow i \\
\text{for} \ i &\leftarrow j + 1 \text{ to } n \\
\text{do if} & \quad A[i] < A[\text{smallest}] \\
\text{then} & \quad \text{smallest} \leftarrow i \\
\text{exchange} & \quad A[j] \leftrightarrow A[\text{smallest}] \\
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) & \text{c}_1 & 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{for} \ i & \text{c}_2 & n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{do} \ \text{smallest} & \text{c}_3 & n-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{for} \ i & \text{c}_4 & n</td>
<td>\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1</td>
<td></td>
</tr>
<tr>
<td>\text{do if} \ A[i] & \text{c}5 & \sum{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} (j - 1) = \sum_{j=1}^{n-1} j = \frac{n(n-1)}{2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{then} \ \text{smallest} & \text{c}6 & \sum{j=2}^{n} (t_j - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{exchange} & \text{c}_7 & n-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The algorithm maintains the loop invariant that at the start of each iteration of the outer for loop, the subarray A[1, ..., j-1] consists of the j-1 smallest elements in the array A[1, ..., n], and this subarray is the sorted order. After the first n-1 elements, the subarray A[1, ..., n-1] contains the smallest n-1 elements, sorted, and therefore element A[n] must be the largest element.

Best Case) Best-case will occur when the array is already sorted, thus \(c_6 \) will never be executed. Hence the running time is:

\[
T(n) = c_1(1) + c_2(n) + c_3(n-1) + c_4(n^2+n-2)/2 + c_5(n^2-n)/2 + c_7(n-1)
\]
\[
T(n) = (c_4/2 + c_5/2)n^2 + (c_2 + c_3 + c_4/2 - c_5/2 + c_7)n + (c_1 - c_3 - c_4 - c_7)
\]
\[
T(n) = a n^2 + b n + c
\]
\[
\mathcal{T}(n) = \Theta(n^2)
\]

Worse Case) Worst-case will occur when the array is unsorted in reverse order (i.e. \(<5, 4, 3, 2, 1>\)), thus \(c_6 \) will occur \(n(n-1)/2 \) time. Hence the running time is:

\[
T(n) = c_1(1) + c_2(n) + c_3(n-1) + c_4(n^2+n-2)/2 + c_5(n^2-n)/2 + c_6(n^2-n)/2 + c_7(n-1)
\]
\[
T(n) = (c_4/2 + c_5/2 + c_6/2)n^2 + (c_2 + c_3 + c_4/2 - c_5/2 - c_6/2 + c_7)n + (c_1 - c_3 - c_4 - c_7)
\]
\[
T(n) = a n^2 + b n + c
\]
\[
\mathcal{T}(n) = \Theta(n^2)
\]

The running time for the algorithm is \(\Theta(n^2) \) for all cases.

3. Exercise 2.2-4)
Modify the algorithm so it tests whether the input satisfies some special-case condition and, if it does, output a pre-computed answer. The best-case running time is generally not a good measure of an algorithm.

4. Exercise 2.3-1)
5. Exercise 2.3-3)
Prove by induction that

\[T(n) = \begin{cases}
2 & \text{if } n = 2 \\
2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1
\end{cases} \]

is

\[T(n) = n \lg n \]

To prove by induction, we must 1) show it is true for some base case, 2) hypothesize for some value of k, and 3) show that it holds for k+1.

Base Case:
when k=1 => n = 2
T(n) = n \lg n = 2 \lg 2 = 2 \times 1 = 2.

Hypothesis Step:
\[T(n) = (n) \lg(n) \]
\[T(2^k) = (2^k) \lg(2^k) \]

Inductive Step k+1:
\[T(2^{k+1}) = 2T(2^{k+1}/2) + 2^{k+1} = 2T(2^k) + 2^{k+1} \]
\[T(2^{k+1}) = 2^{k+1} \left(\lg 2^k + 1 \right) \]
\[T(2^{k+1}) = 2^{k+1} \lg 2^{k+1} \]
Q.E.D.

6. Exercise 2.3-5)
The binary search procedures takes a sorted array A, a value v, and a range \([\text{low} \ldots \text{high}]\) of the array A, in which to search for the value v.

Iterative-Binary-Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
</table>
| **ITERATIVE-BINARY-SEARCH** | A, v, low, high
 | while low ≤ high
 | do mid = \((\text{low} + \text{high}) / 2\)
 | If v = A[mid]
 | then return mid
 | if v > A[mid]
 | then low ← mid + 1
 | else high ← mid - 1
 | return NIL |

Recursive-Binary-Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
</table>
| **RECURSIVE-BINARY-SEARCH** | A, v, low, high
 | if low > high
 | then return NIL
 | mid ← \((\text{low} + \text{high}) / 2\)
 | if v = A[mid]
 | then return mid
 | if v > A[mid]
 | then return RECURSIVE-BINARY-SEARCH(A, v, mid+1, high)
 | else return RECURSIVE-BINARY-SEARCH(A, v, low, mid-1) |

Based on the comparison of v to the middle element in the search range, the search continues with the range halved.
The depth of the tree is computed by noting that \(T(1) \) occurs when \(T(n/2^2) = T(1) \), or \(n/2^j = 1 \). This means \(n = 2^j \), or \(j = \log n \).

7. Exercise 3.1-4

(a) Is \(2^{n+1} = O(2^n) \)?

\[
\text{f(n)} = O(g(n))
\]

\[
0 \leq f(n) \leq c g(n) \text{ where } c > 0 \text{ and } n > n_0
\]

Hence,

\[
0 \leq 2^{n+1} \leq c 2^n \text{ where } n > n_0
\]

\[
0 \leq 2^{n+1} / 2^n \leq c \text{ where } n > n_0
\]

\[
0 \leq 2 \leq c \text{ where } n > 0
\]

\[
c \geq 2 \text{ and } n > 0
\]

Therefore,

\[
2^{n+1} = O(2^n) \text{ Q.E.D.}
\]

(b) Is \(2^{2n} = O(2^n) \)?

\[
\text{f(n)} = O(g(n))
\]

\[
0 \leq f(n) \leq c g(n) \text{ where } n > n_0
\]
Hence,
\[0 \leq 2^{2n} \leq c \cdot 2^n \text{ where } n > n_0 \]
\[0 \leq 2^{2n} / 2^n \leq c \text{ where } n > n_0 \]
\[0 \leq 2^n \leq c \text{ where } n > n_0 \]
\[0 \leq 2^{n_0} \leq c \]

Now,
\[0 \leq 2^{2n} \leq 2^{n_0} \cdot 2^n \text{ where } n > n_0 \]
\[0 \leq 2^{2n} \leq 2^{n+n_0} \text{ where } n > n_0 \]
\[2n \leq n + n_0 \text{ for } n > n_0 \]
\[n \leq n_0 \text{ for } n > n_0 \]

Is a contradiction so,
\[2^{2n} \neq O(2^n) \text{ Q.E.D.} \]

8. **Show that** \(n(n-1)/2 \) **is** \(O(n^2) \)

\[f(n) = O(g(n)) \]

\[0 \leq f(n) \leq c \cdot g(n) \text{ where } c > 0 \text{ and } n > n_0 \]

Hence,
\[0 \leq n(n-1)/2 \leq c \cdot n^2 \text{ where } c > 0 \text{ and } n > n_0 \]
\[0 \leq 1/2-1/2n \leq c \text{ where } c > 0 \text{ and } n > n_0 \]
\[0 \leq 1/2-1/4 \leq c \text{ where } n \geq 2 \]

\[c = 1/4 \]

Hence,
\[0 \leq n(n-1)/2 \leq n^2/4 \text{ where } n \geq 2 \]

Therefore,
\[n(n-1)/2 = O(n^2) \]

9. Using "big-O" notation, give the worst case running times of the following procedures as a function of \(n \).

```pascal
procedure mystery (n: integer);
var
    i,j,k: integer;
begin
    for i := 1 to n-1 do
        for j := i + 1 to n do
```
for \(k := 1 \) to \(j \) do

... a statement requiring \(O(1) \) time

end

<table>
<thead>
<tr>
<th>Line</th>
<th>Pseudo code</th>
<th>Cost</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for (i := 1) to (n-1) do</td>
<td>(c_1)</td>
<td>(n)</td>
</tr>
<tr>
<td>2</td>
<td>for (j := i + 1) to (n) do</td>
<td>(c_2)</td>
<td>(\sum_{j=2}^{i} j = \frac{n^2 + n - 2}{2})</td>
</tr>
<tr>
<td>3</td>
<td>for (k := 1) to (j) do</td>
<td>(c_3)</td>
<td>(\sum_{k=1}^{n} \sum_{j=k}^{n+1} j = \frac{n(2n + 5)(n - 1)}{6})</td>
</tr>
<tr>
<td>4</td>
<td>... a statement requiring (O(1)) time</td>
<td>(c_4)</td>
<td>(\sum_{k=2}^{n} \sum_{j=k}^{n} j = \frac{n(n + 1)(n - 1)}{3})</td>
</tr>
</tbody>
</table>

\[T(n) = c_1 n + c_2 (n^2 + n - 2)/2 + c_3 (n)(2n+5)(n-1)/6 + c_4(n)(n+1)(n-1)/3 \]

\[T(n) = (c_3 + c_4)n^3/3 + (c_2 + c_3)n^2/2 + (n_1 + c_2/2 - 5c_3/6 - c_4/3)n - c_2 \]

\[T(n) \propto n^3 + bn^2 + cn + d \]

\[T(n) = O(n^3) \]